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We consider a thin film of a power-law liquid flowing down an inclined wall with sinusoidal topography.
Based on the von Kármán–Pohlhausen method an integral boundary-layer model for the film thickness
and the flow rate is derived. This allows us to study the influence of the non-Newtonian properties on
the steady free surface deformation. For weakly undulated walls we solve the governing equation analyt-
ically by a perturbation approach and find a resonant interaction of the free surface with the wavy bot-
tom. Furthermore, the analytical approximation is validated by numerical simulations. Increasing the
steepness of the wall reveals that nonlinear effects like the resonance of higher harmonics grow in impor-
tance. We find that shear-thickening flows lead to a decrease while shear thinning flows lead to an ampli-
fication of the steady free surface. A linear stability analysis of the steady state shows that the bottom
undulation has in most cases a stabilizing influence on the free surface. Shear thickening fluids enhance
this effect. The open questions which occurred in the linear analysis are then clarified by a nonlinear sta-
bility analysis. Finally, we show the important role of capillarity and discuss its influence on the steady
solution and on the stability.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The steady, unidirectional gravity-driven flow of a Newtonian
liquid over a flat incline is a fundamental problem in fluid mechan-
ics which has even an exact analytical solution. However, many
applications in environmental (Hutter et al., 1996; Fowler, 1982)
and industrial systems (Kistler and Schweizer, 1997) require more
complex geometries such as bottom corrugations (Argyriadi et al.,
2006), undulations (Wierschem et al., 2005) or complex liquids
with non-Newtonian behaviour (Lawrence and Zhou, 1991).
Bottom corrugations may considerably affect the heat- and mass
transfer in heat and mass exchangers (Kanaris and Mouza, 2006)
and non-Newtonian flows encounter for example in coating
systems and in the modeling of debris, lava or glacier flow.

Although the steady base problem of a Newtonian liquid flow-
ing over an even substrate has a simple analytical solution, the
extension to other systems mostly requires to model the whole
set of equations including the free surface which is not known a
priori but comes out as part of the solution. Starting with the pio-
neering work of Shkadov (1967) who applied the integral bound-
ary-layer theory to a thin film flow of a viscous liquid along a flat
wall, many other researches adopted his idea to more complex
geometries or complex fluids. Trifonov (1998) extended the theory
ll rights reserved.

(C. Heining).
to the flow over an undulated topography and Oron and Heining
(2008) developed a higher order model based on the ideas of
Ruyer-Quil and Manneville (2000). The studies in the literature
reveal that the geometry induces surface effects like hydraulic
jumps, standing waves (Wierschem and Aksel, 2004a), resonance
(Wierschem et al., 2008; Heining et al., 2009) and stabilization of
kinematic surface waves (Wierschem and Aksel, 2003; Dávalos-
Orozco, 2007, 2008; Trifonov, 2007a,b) and flow field effects like
the generation of eddies (Wierschem et al., 2003; Scholle et al.,
2004, 2009; Wierschem and Aksel, 2004b) which are impossible
in the flow over flat inclines.

Other researchers focused on the flow and the instability of
non-Newtonian films along flat inclines, among them Gupta
(1967) for a second order fluid and Berezin et al. (1998) for a
power-law fluid. Dandapat and Mukhopadhyay (2001) studied sur-
face waves of a falling power-law fluid in the integral boundary-
layer framework, while Miladinova et al. (2004) considered the
same problem in the lubrication approximation. Recently, Amaou-
che et al. (2009) developed an extension of the model equations of
Ruyer-Quil and Manneville (2000) which correctly predict the lin-
ear stability threshold. Other effects studied in literature are the
influence of surfactants (Pozrikidis, 2003), electric fields (Tseluiko
et al., 2008), porosity (Pascal, 2006; Sadiq and Usha, 2008; Pascal
and D’Alessio, 2010), external stresses (Pascal, 2003; Pascal and
D’Alessio, 2007), three-dimensionality (Luo and Pozrikidis, 2007)
and evaporation (Gaskell et al., 2006) on thin film flow to name a
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few. An overview over further effects is provided in Craster and
Matar (2009).

Saprykin et al. (2007) studied inertial effects on the flow of a
viscoelastic liquid over a step-down topography. Nevertheless,
the influence of a wavy wall on the steady film and its stability
for a non-Newtonian fluid has not been studied yet and will be pro-
vided by the present work. The outline is as follows: First, the gov-
erning equations are derived in Section 2. In Section 3, we solve the
steady integral boundary-layer model analytically for weak undu-
lations and numerically for arbitrary undulations; we find condi-
tions for maximum amplification of the free surface and study
the influence of the power-law index on the free surface. The
numerical simulations allow us to compare the results with the
analytical predictions. In Section 4, we study the linear and nonlin-
ear stability of the steady solutions and determine the critical Rey-
nolds number for the onset of surface waves, depending on the
undulation and the power-law index. In Section 5, the role of sur-
face tension and its impact on the steady film and the stability is
clarified. Finally, the results and conclusions are discussed in Sec-
tion 6.

2. Derivation of the governing equations

We study an incompressible power-law liquid in the gravity
field~g flowing down an inclined undulated substrate at inclination
angle a. The contour of the topography is given by the periodic
function bðxÞ ¼ a cosð2px=kÞ, where x is the coordinate in the mean
flow direction, a the amplitude of the undulation and k its wave-
length, respectively. The coordinate perpendicular to the x -axis is
denoted by y. We give an overview of the problem setup in Fig. 1.
We note that the flow direction in this and in all following figures
showing free surface profiles is from the left to the right. The stress
tensor sij of the liquid is defined by (Spurk and Aksel, 2008)

sij ¼ 2gnð2DklDklÞðn�1Þ=2Dij; ð1Þ

where

Dij ¼
1
2

@ui

@xj
þ @uj

@xi

� �
ð2Þ

denotes the strain-rate tensor with the velocities ui and spatial vari-
ables xi. In Eqs. (1) and (2) the sum convention is employed. The
constants gn and n are material properties: The constant gn with
the dimension [gn] = kgm�1sn�2 is the so-called consistency factor
of the liquid, a higher gn indicates a more ‘viscous’ liquid and n mea-
sures the departure from the Newtonian behaviour (Aksel and Hey-
mann, 2007). Obviously, in the case n = 1 Eq. (1) reduces to the
Newtonian case. For n < 1 the fluid is shear-thinning and for n > 1
shear-thickening. We note that power-law fluids serve as a simple
but an efficient model for a broad variety of non-Newtonian fluids
like miscellar solutions (Teipel et al., 2001), suspensions and emul-
α x 
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Fig. 1. Flow of a power-law liquid down an incline with inclination angle a. Driving
force is gravity g. In the (x, y) – coordinate system the film thickness, free surface
position and topography are denoted by f, h and b, respectively.
sions (Aksel and Heymann, 2007) and even for biological cells (Fer-
nandez et al., 2007). For further details we refer to Aksel and
Heymann (2007). The other fluid properties, apart from the non-
Newtonian behaviour, are density and surface tension, denoted by
q and r, respectively.

The steady flow over a flat incline shows a constant free surface
position y = d. In the presence of an unsteady flow over an undu-
lated wall the interplay of the fluid between the substrate and
gravity causes an unknown free surface deformation which is de-
noted by h(x, t). The film thickness distribution f(x, t) is then given
by the relation h(x, t) = b(x) + f(x, t). Furthermore, we have three
unknown flow variables, namely the velocities u, v and the pres-
sure p which all depend on the spatial variables x, y and the time t.

The mass and momentum balance read

@u
@x þ @v

@y ¼ 0;

q @u
@t þ u @u

@x þ v @u
@y

� �
¼ � @p

@x þ qg sin aþ @sxx
@x þ

@sxy

@y ;

q @v
@t þ u @v

@x þ v @v
@y

� �
¼ � @p

@y � qg cos aþ @syx

@x þ
@syy

@y :

ð3Þ

The field equations are complemented by the no-slip and no-pene-
tration condition at the substrate y = b(x)

u ¼ v ¼ 0; ð4Þ

and the kinematic boundary condition and the two components of
the dynamic boundary condition at the free surface y = h(x, t):

@h
@t þ u @h

@x ¼ v;

syx 1� @h
@x

� �2
� �

� ðsxx � syyÞ @h
@x ¼ 0;

p� pair ¼ �r @2h
@x2 1þ @h

@x

� �2
� ��3=2

þ sxx
@h
@x

� �2 � 2syx
@h
@x þ syy

� �
1þ @h

@x

� �2
� ��1

;

ð5Þ

where pair denotes the passive gas over the fluid film.
The correspondence to the flow over a flat incline motivates us

to adopt the scaling in Miladinova et al. (2004). In the case of the
flow over a flat incline the steady velocity reads

u ¼ n
1þ n

qg sin a
gn

� �1=n

dð1þnÞ=n 1� 1� y
d

� �ð1þnÞ=n
� 	

: ð6Þ

It has to be noted that the other velocity component vanishes: v = 0.
The solution (6) can be obtained by solving the steady momentum
balance under the assumption of an unidirectional flow. As charac-
teristic scales we choose

x ¼ k
2p

x� y ¼ dy� f ¼ df �

h ¼ dh� b ¼ ab� p ¼ q�u2p�

u ¼ �uu� v ¼ 2pd
k

�uv� t ¼ k
2p�u

t�

s ¼ gn

�un

dn s�;

ð7Þ

where �u is the mean velocity of the Nusselt film given by the
relation

�u ¼ 1
d

Z d

0
uðyÞdy ¼ n

1þ 2n
qg sin a

gn

� �1=n

dð1þnÞ=n
: ð8Þ

We remark that the dimensional reference flow rate is defined by
the expression q ¼ �ud. The quantities in (7) with asterisk denote
dimensionless variables. In the following the asterisk is omitted
and all field equations are dimensionless. In dimensionless form
the constitutive equation reads
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sij ¼ 2 2d2 @u
@x

� �2

þ @v
@y

� �2
 !

þ d2 @v
@x
þ @u
@y

� �2
" #n�1

2

�
d @u
@x

1
2 d2 @v

@x þ @u
@y

� �
1
2 d2 @v

@x þ @u
@y

� �
d @v
@y

0
B@

1
CA; ð9Þ

where we introduced the dimensionless quantity d ¼ 2pd=k, which
will be referred to as the dimensionless film thickness parameter.
Substituting the scaling (7) into the field equations (3) and bound-
ary conditions (4), (5) we arrive at the dimensionless formulation of
the problem. The field equations then read

dRe
@u
@t
þ u

@u
@x
þ v @u

@y

� �
¼ �dRe

@p
@x
þ n

1þ 2n

� ��n

þ d
@sxx

@x
þ @sxy

@y
;

d3Re
@v
@t
þ u

@v
@x
þ v @v

@y

� �
¼ �dRe

@p
@y
� n

1þ 2n

� ��n

d cot a

þ d2 @syx

@x
þ d

@syy

@y
;

ð10Þ

@u
@x
þ @v
@y
¼ 0; ð11Þ

where we introduced a generalized Reynolds number in line with
Dandapat and Mukhopadhyay (2003) defined as

Re ¼ q�u2�ndn

gn
: ð12Þ

The form of (12) becomes clear by considering the ratio of the char-
acteristic mass flow rate q�ud to the viscous term given by
gnð�u2=d2Þðn�1Þ=2, see Eq. (1). The no-slip and no-penetration condi-
tion at the substrate y = nb(x) remain unchanged u = v = 0. As a con-
sequence of our scaling a steepness parameter n = a/d enters in the
boundary condition measuring the deviation from the case of a flat
substrate. For n = 0 the problem reduces to the system with the
solution (6) in dimensional form.

The boundary conditions at the free surface y = h read

@h
@t
þ u

@h
@x
¼ v; ð13Þ

syx 1� d2 @h
@x

� �2
" #

� dðsxx � syyÞ
@h
@x
¼ 0;

dReðp� pairÞ ¼ �3dBo�1 @
2h
@x2 1þ d2 @h

@x

� �2
" #�3=2

ð14Þ

þ d3sxx
@h
@x

� �2

� 2d2syx
@h
@x
þ dsyy

" #
1þ d2 @h

@x

� �2
" #�1

;

where the generalized inverse Bond number has been introduced as a
measure for surface tension r. In analogy to the generalized Reynolds
number, the generalized inverse Bond number is defined as
Bo�1 ¼ ð1=3Þðð1þ 2nÞ=nÞn � ð2plCaÞ2=ðk2 sinaÞ with the capillary
length lCa ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r=ðqgÞ

p
. It couples the power-law index with the in-

verse Bond number for Newtonian flows (Wierschem et al., 2008).
To sum it up, the above formulated problem is embedded in a
6-dimensional parameter space with Re, Bo�1, cot a, d, n and n. We
remark that other authors use different sets of dimensionless param-
eters. For example in the case of the non-Newtonian flow over a flat
incline (Dandapat and Mukhopadhyay, 2001) or the Newtonian flow
over an undulated incline (Trifonov, 2007b) the Kapitza or film num-
ber is introduced. This leads to the set of non-dimensional parame-
ters Re, k=lCa; a=k; cot a; n and Ka, where Ka = (r/q)2+ng2�3n(gn/q)�4

is the Kapitza number, which has the advantage that only one param-
eter depends on the flow rate. From the dimensionless point of view
both sets are equivalent. Since the present work is an extension of
Wierschem et al. (2008) and Heining et al. (2009) we use the same
dimensionless parameters here for convenience.

In the following, we assume a thin film approximation (Heining
et al., 2009) and truncate equations (10), (14) at order d2 assuming
that dRe = O(1), d cot a = O(1) and dBo�1 = O(1). After substituting
the stress tensor (9) the leading order momentum balance reads

dRe
@u
@t
þ u

@u
@x
þ v @u

@y

� �
¼ �dRe

@p
@x
þ n

1þ 2n

� ��n

þ @

@y
@u
@y

� �n

;

ð15Þ

0 ¼ �dRe
@p
@y
� n

1þ 2n

� ��n

d cot a: ð16Þ

The no-slip, no-penetration condition at the substrate y = nb and the
kinematic boundary condition at the free surface y = h remain still
unchanged. After substituting the stress tensor (9) the dynamic
boundary condition (14) yields at leading order

0 ¼ @u
@y
; ð17Þ

dReðp� pairÞ ¼ �dBo�1 @
2h
@x2 : ð18Þ

Eq. (16) can be integrated and gives, after inserting the dynamic
boundary condition (18), an expression for the pressure:

dRep ¼ dRepair � 3dBo�1 @
2h
@x2 þ

n
1þ 2n

� ��n

d cotaðh� yÞ: ð19Þ

This expression can then be used to eliminate the pressure in the
momentum balance (15) which yields

dRe
@u
@t
þ u

@u
@x
þ v @u

@y

� �
¼ 3dBo�1 @

3h
@x3

� n
1þ 2n

� ��n

d cota
@h
@x

þ n
1þ 2n

� ��n

þ @

@y
@u
@y

� �n

: ð20Þ

In the following, we apply the Kármán-Pohlhausen integral bound-
ary-layer method (Kármán, 1921; Pohlhausen, 1921) and integrate
Eq. (20) with respect to y from the substrate y = nb to the free sur-
face y = h. After substituting f = h � nb the resulting equation reads

dRe
@

@t

Z h

nb
udyþ @

@x

Z h

nb
u2dy

 !
¼ 3dBo�1 @

3h
@x3 f � n

1þ2n

� ��n

� dcota
@h
@x

f þ n
1þ2n

� ��n

f � @u
@y

� �n����
y¼nb

;

ð21Þ

where we already made use of the no-slip boundary condition, the
dynamic boundary condition (17) and applied Leibniz’ integration
rule. After averaging the continuity equation (11) and applying
the kinematic boundary condition (13) we obtain

@h
@t
þ @q
@x
¼ 0; ð22Þ

where we introduced the flow rate per unit film width

q ¼
Z h

nb
udy: ð23Þ

The averaging process has the consequence that local information is
partially lost. The system given by the integral momentum balance
(21) and the integral mass balance (22) contains three unknown
variables u, q and h which have to be determined by only two
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equations. To close the system, a specific velocity profile has to be
introduced. We follow the idea in Heining et al. (2009) and assume
that the velocity profile in the case of the flow over a slightly undu-
lated topography is locally close to that of a flat incline. Compari-
sons with experiments and theoretical investigations have shown
that this reflects the reality quite well for Newtonian liquids (Wier-
schem et al., 2002). We hence take the velocity profile (6) and adopt
it to the undulated topography. It then reads in dimensionless form

u ¼ 1þ 2n
1þ n

q
f
½1� ð1� ðy� nbÞ=f Þð1þnÞ=n�: ð24Þ

In the case of a Newtonian liquid with n = 1 Eq. (24) reduces to a
parabolic velocity profile. The other velocity component can be
computed by applying the continuity equation but it is not relevant
for the following since it has been eliminated in (21).

Substituting the velocity profile (24) into the momentum bal-
ance (21), we finally arrive at the integral boundary-layer model,
denoted as IBL model in the following:

dRe
@q
@t
þ 2ð1þ 2nÞ

2þ 3n
@

@x
q2

f

� �� �
¼ 3dBo�1 @

3h
@x3 f

þ 1
3

1þ 2n
n

� �n

�3d cota
@h
@x

f þ 3f � 3qn

f 2n

� �
: ð25Þ

In the steady case with o/ot = 0 the continuity equation (22) can be
integrated yielding q = 1 and the shape of the free surface is com-
pletely described by the momentum balance (25). We therefore
have to solve an ordinary differential equation for the steady film
thickness f.

In this paper, particularly the influence of the steepness param-
eter n and the power-law index n on the response of the free sur-
face will be investigated. In the case of the steady flow over a
periodically undulating contour with b = cos x the IBL-model (25)
reads

dRe
2ð1þ2nÞ

2þ3n
d
dx

1
f

� �� �
¼ 3dBo�1 d3f

dx3 f

þ1
3

1þ2n
n

� �n

�3dcota
df
dx

f þ3f � 3
f 2n

� �

þ 3dBo�1þ 1þ2n
n

� �n

dcota
� �

f nsinx:

ð26Þ

Tracing back the terms in (26) to the original momentum balance
allows us to identify their origin: (i) The left hand side is responsible
for the influence of inertia. (ii) The first term at the right hand side
measures the influence of surface tension and comes into play
through the dynamic boundary condition. (iii) The second line of
(26) includes the hydrostatic pressure, the gravitational forcing
and the wall shear stress. (iv) The periodic inhomogeneity in the
last line comes from the forcing due to the undulated topography.
3. Linear and nonlinear resonance of the free surface

In this section, we seek for steady analytical and numerical
solutions of the IBL model (26). To begin with, we assume periodic
undulations with weak steepness:

n� 1: ð27Þ

In this case the solution f(x) can be determined by using n as a per-
turbation parameter and expanding the film thickness into a series
in n:

f ¼ 1þ nf1 þ Oðn2Þ: ð28Þ
In the expansion (28) we already incorporated the information that
f0 = 1 in the basic case corresponding to the steady flow over a flat
wall. Substituting the expansion (28) into the steady IBL-model (26)
yields at order n1

0 ¼ 3ð1� 2nÞf1 þ 3d cot a
df1

dx

� �
1
3

1þ 2n
n

� �n

� 3dBo�1 d3f1

dx3

� dRe
2ð1þ 2nÞ

2þ 3n

� �
df1

dx

� 3 dBo�1 þ 1
3

1þ 2n
n

� �n

d cot a
� �

sin x; ð29Þ

which is a linear ordinary differential equation for the first order
film thickness f1. According to the periodicity of the inhomogeneity
we assume that the solution inherits the periodicity of the substrate
and can be written as a periodic function with the same periodicity
as the substrate contour, hence

f1 ¼ S1 sin xþ C1 cos x; ð30Þ

with constants S1, C1 which have to be determined. Substituting
(30) into (29) and equating like coefficients yields the solution

S1 ¼
�3ð1þ 2nÞK2ð3K2d cot aþ 3dBo�1Þ

ð3K2d cotaþ 3dBo�1 � dReK1Þ2 þ 9K2
2ð1þ 2nÞ2

;

C1 ¼
�ð3K2d cotaþ 3dBo�1 � dReK1Þð3K2d cot aþ 3dBo�1Þ
ð3K2d cotaþ 3dBo�1 � dReK1Þ2 þ 9K2

2ð1þ 2nÞ2
;

ð31Þ

where we introduced the abbreviations K1 = 2(1 + 2n)/(2 + 3n) and
K2 = ((1 + 2n)/n)n/3 which only depend on the power-law index n.

We are now able to study the impact of n on the free surface
deformation by considering the solution up to first order in n

f ¼ 1þ nðS1 sin xþ C1 cos xÞ: ð32Þ

The free surface position at first order then reads h = n cos x +
1 + n(S1 sin x + C1 cos x).

The previous analysis was restricted to the assumption n� 1
which allowed us to apply a perturbation approximation. Next,
we solve the steady IBL-model (26) numerically to (i) check the
accuracy of the previous approximation and (ii) obtain solutions
in parameter domains where n = O(1). According to the assumption
that the steady solution inherits the periodicity of the topography
we apply periodic boundary conditions in the numerical procedure
as well. A finite-difference scheme of second order is used to re-
duce Eq. (26) to a nonlinear algebraic equation which is solved
with Newton’s method.

Fig. 2 shows the free surface shape for different power-law indi-
ces n. We conclude that the free surface amplitude strongly de-
pends on the power-law index n. For n > 1 the free surface
amplitude is smaller than in the Newtonian case whereas it is
higher for n < 1. Shear thinning liquids hence lead to an amplifica-
tion of the free surface. It is obvious that a less ‘viscous’ liquid re-
sults in a stronger interaction of the free surface with the
topography. The phenomenon of the surface amplification is called
‘‘resonance” in the literature (Wierschem et al., 2008; Heining et
al., 2009) although it is not a dynamic process. At a particular Rey-
nolds number the surface elevation forms a pronounced static
hump which is fixed in space. Even though travelling waves are
passing by this configuration remains steady. A detailed explana-
tion of this phenomenon is given in Wierschem et al. (2008). First
experimental evidence for resonance was provided by Vlachogian-
nis and Bontozoglou (2002) for rectangular corrugations and later
by Wierschem and Aksel (2003) for sinusoidally corrugated
topographies.
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Fig. 2. Numerical and analytical free surface shapes. Lines indicate the analytical
solution up to first order while the points indicate the numerical solution,
respectively. The parameters are cot a = 5, Bo�1 = 10, Re = 40, d = 0.2, n = 0.2.
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The comparison of the numerical results with the analytical
approximation for the free surface shape in Fig. 2 shows that par-
ticularly, for n = 1 and n = 1.4 the solutions almost coincide. For
n = 0.6 the numerical solution overestimates the analytical approx-
imation. We suppose that this comes from the lacking contribution
of the constant component which remains unaffected in the first
order perturbation approximation, see Eq. (32).

In order to classify the free surface response at leading order we
define the relative free surface amplitude and the relative film
thickness amplitude by

ah ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2

1 þ ð1þ C1Þ2
q

; af ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2

1 þ C2
1

q
; ð33Þ

respectively. The relative free surface amplitude has the following
physical interpretation: If for example ah = 1 then the free surface
amplitude has the same magnitude as the topography amplitude.
The case ah > 1 corresponds to an amplification, whereas ah < 1 cor-
responds to a relative damping, compared to the topography ampli-
tude. The same holds for the relative film thickness amplitude af.
Next, we study the impact of the power-law index n on the relative
film thickness amplitude af and the relative free surface amplitude
ah. The system depends on six parameters which are Re, d, cot a,
Bo�1, n and n. In most of the following studies we fix d = 0.2,
cot a = 5, Bo�1 = 10 to reduce the parameter space to a manageable
set.

Fig. 3 depicts the amplitude of the free surface ah and the film
thickness af as a function of the Reynolds number. In both cases
we observe that the amplitudes show a maximum, depending on
n. The power-law index n has, as already predicted by Fig. 2, a
strong influence on both amplitudes. Shear thickening liquids lead
to decreased amplitudes in both cases, whereas shear thinning liq-
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Fig. 3. Free surface ah and film thickness amplitude af vs. Reynolds number. In plot (b) po
first order, respectively. The parameters are Bo�1 = 10, cot a = 5, d = 0.2.
uids lead to increased amplitudes. The position of the maximum is
referred to as the resonant Reynolds number. For ah the resonant
Reynolds number decreases for decreasing n whereas the resonant
Reynolds number for af hardly changes. The curves for ah and af are
both related to each other and have the same qualitative shape. In
the following, we hence restrict our studies to the amplitude of the
film thickness af.

We also compare the first harmonic of the numerical solution
with the relative film thickness amplitude af of the perturbation
approximation in Fig. 3b. Both solutions show a perfect agreement,
independent of n. It hence can be concluded that the difference in
Fig. 2 stems either from the constant component or higher har-
monic contributions which are not part of the ansatz (30). The
numerical solution is not restricted to monofrequent functions as
assumed by the analytics but may in fact exhibit nonlinear higher
harmonics.

The simple expression for af allows us to determine an expres-
sion for the resonant Reynolds number. We seek the position of the
maximum by deriving af with respect to Re and computing the
zero. A much easier approach, which yields the same result, can
be found from the special form of af. Minimizing the denominator
of S1 and C1 results in a maximum for af. We hence obtain for the
resonant Reynolds number the simple expression

Reres ¼
3ð2þ 3nÞ
2ð1þ 2nÞ

1
3

1þ 2n
n

� �n

cot aþ Bo�1
� �

; ð34Þ

where we have already resubstituted K1 and K2. In the Newtonian
case with n = 1 Eq. (34) reduces to the known expression
Reres;n¼1 ¼ 5

2 ðcotaþ Bo�1Þ from Heining et al. (2009). In the follow-
ing, we study the impact of the power-law index n on the resonant
Reynolds number (34). From (34) we conclude that high surface
tension requires higher Reynolds numbers to achieve resonance.
Inertial forces have to counteract the higher capillary pressure in
this case. Shear thickening fluids also lead to an increase of the res-
onant Reynolds number since the increasing viscous forces have to
be compensated by inertia. We also observe that the resonant Rey-
nolds number increases with the cotangens of the inclination angle.
As a consequence, resonance at lower inclination angles can only be
obtained by increasing inertia.

Evaluating af at Re = Reres delivers an expression for the maxi-
mum relative amplitude which reads

af max ¼
1

1þ 2n
3dBo

1þ 2n
n

� ��n

þ d cota
� �

: ð35Þ

In the Newtonian case Eq. (35) simplifies to af max ¼ 1=3ðdBoþ
d cotaÞ. We remark that decreasing n yields an increased maximum
amplitude, independent of surface tension or inclination angle. As
expected, shear thickening liquids lead to smaller amplitudes in
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both cases due to the increasing influence of viscous damping
forces.

In the following, we focus on liquids which differ only slightly
from the Newtonian case to highlight the influence of the power-
law index n. We take the relative film thickness amplitude again
as a measure for the free surface response and particularly consider
the maximum value for Re = Reres. The maximum amplitude af max

is then expanded in a Taylor series around n = 1

af max ¼
1
3
ðd cotaþ dBo�1Þ � af max1

ðn� 1Þ þ Oððn� 1Þ2Þ; ð36Þ

with the first order correction

af max1
¼ ðBo�1ð1þ 3 ln 3Þ þ 2 cotaÞ

9ðBo�1 þ cotaÞ
ðdBo�1 þ d cot aÞ; ð37Þ

which is always positive. As a consequence, the maximal relative
film thickness amplitude af max increases if n < 1 and decreases with
n > 1. We hence confirm that a shear thinning liquid always leads to
an increase of the maximum amplitudes due to a stronger interac-
tion of the free surface with the topography.

The nonlinearity of the free surface is now studied by the Fou-
rier decomposition of the film thickness. To this end, we increase
the steepness parameter n further to reveal nonlinear effects. In
Fig. 4 we plot the first four Fourier modes of the film thickness.
It can be concluded that the order of magnitude decreases from
order to order which yields an a posteriori confirmation of the
ansatz (28) and (30). The second harmonic is of order O(10�1)
whereas the third is already of order O(10�2). From Fig. 4a we con-
clude that the basic Fourier mode is not equal to 1 as assumed in
the ansatz (28) but is larger. However, this effect decreases with
increasing power-law index. This explains the deviation in Fig. 2
where the numerical solution overestimates the analytical approx-
imation. Furthermore, the first harmonic in Fig. 4b based on the
nonlinear theory shows in fact two maxima in contrast to the ana-
lytical result. We find another local maximum at higher Reynolds
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Fig. 4. The first four Fourier modes of the film thickness f
numbers which is further increased with decreasing power-law in-
dex n. Higher harmonics in (c) and (d) show a similar behaviour
but the second maximum is even more pronounced. Both maxima
seem to bend to the right with decreasing power-law index n. A
similar effect has been observed by Heining et al. (2009) in the
Newtonian case. They even found bistable resonance leading to a
tilt of the resonance curve to the right.
4. Linear and nonlinear stability of the steady state

In the preceding section, we solved the integral boundary-layer
model analytically for weak bottom amplitudes and numerically
for higher bottom amplitudes. Next, we discuss the linear stability
of the system. For this sake, we linearize the mass balance (22) and
the IBL-model (25) around the steady state by substituting
ðf ; qÞ ¼ ðfsðxÞ;1Þ þ eð~f ðx; tÞ; ~qðx; tÞÞ with e� 1. The linearized equa-
tions at order e1 then read

@~h
@t
þ @

~q
@x
¼ 0; ð38Þ

and

dRe
@~q
@t

f 3
S þ 2K1

@~q
@x

f 2
S � K1

@~f
@x

fS þ ð3K1
~f � 2K1q1fSÞ

dfS

dx

 !

þ 3d cot aK2f 4
S
@~f
@x
� 3dBo�1f 4

S
@3~f
@x3

� 1
f 2n�2
S

K2ðð6nþ 3Þ~f � 3n~qfSÞ ¼ 0; ð39Þ

with the abbreviations K1, K2 introduced in (31). In (39) we already
made use of the e0 – equation which has the consequence that (39)
only depends on the steady solution fS(x) but not explicitly on the
topography function b(x). Introducing periodic perturbations of
the form
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or the parameters Bo�1 = 10, cot a = 5, d = 0.2, n = 0.6.
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~f ¼ f̂ ðxÞ expð�ixtÞ;
~q ¼ q̂ðxÞ expð�ixtÞ;

ð40Þ

where x 2 R is the temporal frequency and f̂ ; q̂ are the amplitudes
of the perturbation, yields

� ixf̂ þdq̂
dx
¼ 0;

dRe 2K1
dq̂
dx

f 2
S �K1

df̂
dx

fS� q̂f 3
S xi�K1ð2q̂fS�3f̂ ÞdfS

dx

 !
ð41Þ

þ3K2dcota
df̂
dx

f 4
S �3dBo�1 d3 f̂

dx3 f 4
S �

1
f 2n�2
S

K2ðð6nþ3Þf̂ �3nq̂fSÞ ¼ 0:

In the following, we study the stability by prescribing the frequency
of the perturbation x and determining the corresponding ampli-
tude functions f̂ and q̂ whose spatial evolution is responsible for
the stability of the system. If f̂ and q̂ grow in space, the solution
is unstable, otherwise it is stable, whereas the neutral case is given
by spatially periodic amplitudes f̂ and q̂.

First, we rewrite (41) into a system of 4 ordinary differential
equations of first order

de
dx
¼ CðxÞeðxÞ; ð42Þ

where ðe1; e2; e3; e4Þ ¼ ðq̂; dq̂=dx;d2q̂=dx2
;d3q̂=dx3Þ. A detailed form

of (42) is given in the Appendix. According to the periodicity of
the steady system, the solution fS and thus all coefficient functions
of (41) are periodic with periodicity 2p. The same holds for the coef-
ficient matrix CðxÞ 2 C4�4, Cð0Þ ¼ Cð2pÞ. The periodicity of the coef-
ficients motivates us to apply monodromy theory (Jordan and
Smith, 1987). The eigenvalues ki; i ¼ 1; . . . ;4 of the monodromy ma-
trix M ¼ Eð2pÞEð0Þ�1 are responsible for stability or instability with
E being the corresponding fundamental matrix. The solution can
then be written as ei ¼ e0

i ðxÞ expðqixÞwhere qi are the Floquet expo-
nents with expð2pqiÞ ¼ ki and e0

i ðxÞ are periodic functions, respec-
tively. Since e0

i ðxÞ are periodic they have no influence on the
stability and thus stability is only governed by the eigenvalues ki.
If jkij < 1; i ¼ 1; . . . 4, then the solution is stable, otherwise, it is
unstable. In the limit case jkij ¼ 1; i ¼ 1; . . . 4 the solution for e and
thus for f̂ and q̂ is periodic.

We determine the eigenvalues of M for varying Re and x. The
matrix M and the eigenvalues ki are computed numerically. As a
first test example we consider the known case of a Newtonian li-
quid flowing down an inclined flat plane. The critical Reynolds
number for instability reads Recrit = cot a. It has to be noted that
the critical Reynolds number determined by the integral bound-
ary-layer model differs by a factor 5=6 from the exact value (Yih,
1963). Ruyer-Quil and Manneville (2000) developed a weighted-
residual integral boundary-layer model which was recently ex-
tended by Oron and Heining (2008) to the Newtonian flow over
an undulated incline both predicting the correct critical Reynolds
number Recrit = (5/6) cot a for the flat incline. However, the deriva-
tion of the extended equations is highly complicated; nevertheless
the qualitative behaviour is identical and the gain has only minor
quantitative impact.

From the numerical studies in the well known case n = 0 and
n = 1 we conclude that three of the four independent solutions
are physically not realistic since the corresponding eigenvalues
are either always stable or always unstable. We hence focus on
the physically realistic eigenvalue which correctly reproduces the
limit case n = 0 and n = 1. For the non-Newtonian case with n – 1
but n = 0 the corresponding critical Reynolds number Recrit =
(1 + 2n)n�1n2�n cot a confirms the results given in Dandapat and
Mukhopadhyay (2001). The neutral curve reads

Re ¼ ð1þ 2nÞn�1n2�n cot aþ ð3Bo�1n4ð1þ 2nÞ�3Þx2: ð43Þ
Considering (43) we find out that increasing the power-law index n
leads to an increase of the critical Reynolds number, while decreas-
ing n decreases the domain of stability. It is obvious that a less ‘vis-
cous’ fluid becomes unstable at lower Reynolds numbers. The
critical Reynolds number lies at x = 0 which is an indicator for
the long-wave instability of the system.

In the following, we use the known case (43) as a starting point
and discuss the dependence of the neutral curve and the critical
Reynolds number on the steepness parameter n. Fig. 5 shows
curves for Newtonian (a), shear thickening (b) and shear thinning
(c) fluids. From the case in (a) we conclude that the neutral curves
are shifted to the right with increasing bottom steepness. Further-
more, the neutral curves exhibit a dent for higher n which finally
leads to the separation of the neutral curve into two disjoint do-
mains. The character of the instability is still long-wave, however,
the critical Reynolds number increases which yields a stabilizing
with increasing n. For shear thickening fluids in case (b) the stabi-
lizing is even more pronounced. Furthermore, the dent grows
which finally yields a neutral curve which is located at the upper
right. As a consequence, the system is unstable with respect to a
short-wave instability. A completely different configuration con-
cerning the critical Reynolds number is obtained in the shear thin-
ning case (c). For small x the neutral curves are shifted to smaller
Reynolds numbers which corresponds to a destabilizing of the sys-
tem. At higher steepness parameters the neutral curve shows a
dent and another stable domain at higher Reynolds numbers.

We conclude that a stabilizing or destabilizing effect of the
topography strongly depends on the power-law index n. This moti-
vates us to focus on the critical Reynolds number as a function of
the power-law index n and the steepness parameter n. Since the
critical Reynolds number depends on n as well, we consider the ra-
tio of the critical Reynolds number for the flow over an undulated
topography to the critical Reynolds number for the flow over a flat
incline in order to highlight the impact of the undulation. We
therefore define
f ¼ Recritðn;nÞ
Recritð0;nÞ

; ð44Þ
which measures the stabilizing or destabilizing as a function of the
steepness parameter. The factor f is referred to as the stabilization
factor in the following. If f > 1 the topography has a stabilizing influ-
ence, if f < 1 it has a destabilizing influence, compared to the flow
over a flat incline.

Fig. 6 depicts the stabilization factor for increasing n. We con-
firm the assumptions we already made with the help of Fig. 5:
Increasing the steepness parameter leads to a stabilizing effect
for n > 1. The stabilizing almost reaches a factor 3 which corre-
sponds to a critical Reynolds number which is three times larger
than that of the corresponding flat incline. For larger steepness
parameters n the stabilizing effect weakens and the factor f de-
creases again for higher values of n. For shear thinning fluids with
n < 1 the effects are different. In the cases n = 0.8 and n = 0.9 we ob-
serve that the undulation has a destabilizing influence on the flow.
For n = 0.8 and n = 0.5 the critical Reynolds number is only half of
that of the flow over a flat incline. We note that similar curves of
critical Reynolds numbers have already been observed by D’Alessio
et al. (2009) in the Newtonian case by studying a weighted-
residual integral boundary-layer model of higher order. Heining
and Aksel (2009) found qualitatively similar effects for the corre-
sponding inverse problem.

The linear stability maps will now be completed by a full non-
linear study. The aims of this approach is twofold: (i) To draw
the neutral curves more precisely and (ii) to clarify the existence
of the peninsulas and islands in the stability maps in Fig. 5. To this
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end, we solve the full time-dependent integral boundary-layer
model (22), (25) numerically.

In contrast to the steady solution where we assumed periodicity
in spatial direction, an open flow domain is now necessary. Fur-
thermore, we have to define an initial condition which is set to
qðx; t ¼ 0Þ ¼ 1; f ðx; t ¼ 0Þ ¼ 1. The inlet boundary condition is gi-
ven by a time-periodic perturbation with frequency x. We pre-
scribe the flow rate at x = 0 by assuming q ¼ 1þ ~e sinðxtÞ with
~e ¼ 0:2. At the exit the outlet boundary condition has to be as neu-
tral as possible to avoid reflections in the upstream direction. On
the other hand, the convective character of the system with a dom-
inant main flow direction has the consequence that only a small
fraction of the entire channel is affected by perturbations due to
the exit condition. We find that a fixed film thickness and a fixed
flow rate at the outflow results in small reflections upstream. Fur-
thermore, we neglect the lowest part of the channel and only con-
sider the numerical solution in the upper part to ensure no
influence of the outlet. Since the stability of the flow is of interest
we also have to extend the solution domain to several periods of
the topography. Typically, we use 300 periods of the topography
as the solution domain and determine whether the perturbations
coming from the inlet are damped or amplified. This yields for
every pair of Reynolds numbers and excitation frequencies a crite-
rion for stability or instability. The IBL-model itself is solved using
a finite-difference scheme. The derivatives in spatial direction are
approximated using first order difference quotients. Next, the
resulting system of ordinary differential equations is solved with
a second order Runge–Kutta method.

The results of the nonlinear analysis are shown in Fig. 7 where
we display the neutral curves in comparison with the linear anal-
ysis. First, the qualitative agreement is perfect even for higher Rey-
nolds numbers. Second, we find that the nonlinear analysis does
not confirm the appearance of the peninsula in Fig. 7a. Also the
lower branch of the neutral curve for n = 0.4 in Fig. 7b is not recov-
ered. Thus, their existence does not reflect the physical reality but
must be attributed to the weakness of the linearization.
5. The role of capillarity

The thin-film approach of the previous sections is applicable in
the case of moderate inverse Bond numbers with dBo�1 = 1. From
the parameter studies concerning the steady state and the reso-
nance we conclude that the inverse Bond number has a strong
influence on (i) the resonant Reynolds number and (ii) the ampli-
tude for resonance. Furthermore, surface tension contributes to
the governing equation (25) together with the highest derivative
which highlights its special role. This motivates further parameter
studies for smaller surface tension coefficients.

To begin with, we consider the resonance cases in Fig. 4 and
determine the Fourier decomposition of the film thickness for
smaller inverse Bond numbers keeping all the other parameters
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fixed. The results are depicted in Fig. 8. We find that (i) It is obvious
that for the zeroth and the first Fourier mode the second maximum
disappears completely while the second maximum for higher Fou-
rier modes only occurs for smaller values of the power-law index n.
(ii) The maxima are much smaller and consequently the resonance
is weaker. It can be concluded that the steady solution is signifi-
cantly influenced by the surface tension.

Further surface tension effects become obvious in the stability
problem. For the non-Newtonian flow over a flat incline the critical
Reynolds number reads Recrit = (1 + 2n)n�1n2�n cot a. It is clear that
increasing n and increasing cot a lead to an increasing critical Rey-
nolds number which is independent of the surface tension. For a
flat incline where the steady solution yields a flat free surface, sur-
face tension plays a secondary role. However, in the case of an
undulated topography, where the base solution has already a
curved shape the influence of surface tension grows in importance.
The results of the previous sections show that the impact of a peri-
odic topography on the stability depends on the power-law index
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Fig. 8. The first four Fourier modes of the film thickness
n. Compared to the flow over a flat incline both, stabilizing or
destabilizing effects are possible.

In the following, we point out the influence of surface tension
on the neutral curves and on the critical Reynolds number. Fig. 9
shows neutral curves for the same parameters as in Fig. 5 but with
smaller inverse Bond numbers. A completely different qualitative
behaviour is evident. First, we observe no indentations, no forma-
tion of islands or peninsulas in the stability map and secondly the
topography yields for both cases, shear thinning and shear thicken-
ing, a stabilizing compared to the corresponding flow over a flat in-
cline. We hence assume that the effects in Fig. 5 mainly arise from
high values of surface tension. For smaller or moderate surface ten-
sion coefficients the neutral curves are only shifted to the right
without strong changes in shape.

It has to be noted that a destabilizing effect of a periodic topog-
raphy on a Newtonian flow has already been reported in literature
(Heining and Aksel, 2009; D’Alessio et al., 2009; Häcker and Uec-
ker, 2009). However, a destabilizing effect arises only – in line with
0.0

0.2

0.4
b)

n=0.6

n=1

n=1.4

1st
 F

ou
ri

er
 m

od
e

Reynolds number
50 100 150 200

50 100 150 200
0.000

0.025

0.050

0.075

0.100)
n=0.6

n=1

n=1.4

3rd
 F

ou
ri

er
 m

od
e

Reynolds number

for the parameters Bo�1 = 1, cot a = 5, d = 0.2, n = 0.6.
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the present work – if surface tension is strong enough. For smaller
surface tensions, the topography always yields a stabilizing effect,
which has been already confirmed experimentally (Vlachogiannis
and Bontozoglou, 2002; Wierschem et al., 2005; Argyriadi et al.,
2006) and theoretically (Wierschem and Aksel, 2003; Dávalos-Or-
ozco, 2007, 2008; Trifonov, 2007a,b). The influence of the topogra-
phy on the stability of thin films for higher inverse Bond numbers
has not been reported experimentally yet.
6. Discussion

We have found that the power-law index has a significant influ-
ence on the steady surface deformation of a film over an undulated
topography. While shear-thickening flows lead to a decrease, shear
thinning flows lead to an amplification of the steady free surface.
This resonance-like phenomenon is further studied by considering
the first Fourier modes of the film thickness as a measure for the
free surface amplification. We find that for increasing Reynolds
number the amplitudes show two maxima, indicating high surface
deformations. Shear thinning fluids even amplify this effect. How-
ever, in the case of smaller surface tension, viscous effects are dom-
inant which lead to a smoothening of the free surface and
decreased free surface amplitudes.

Although the Reynolds numbers in the studied regime are quite
high which implies unsteady motion we nevertheless consider the
flow in a steady framework. A justification of this lies in the con-
vective character of the system which has the consequence that
possible perturbations travel downstream and affect the steady
solution only temporarily. Further deeper arguments and experi-
mental validations can be found in Wierschem et al. (2008),
Vlachogiannis and Bontozoglou (2002), Wierschem and Aksel
(2004a).

The steady investigation is complemented by a stability analy-
sis. It is shown how the shear thinning or shear thickening proper-
ties and the topography affect the stability of the system. A linear
stability analysis reveals that several qualitatively different effects
are possible. Increasing the steepness of the topography we find
that the flow is stabilized for shear thickening fluids. For shear
thinning fluids the topography leads to a destabilization, always
compared to the case of the flow over a flat incline. Furthermore,
the stability maps show disjoint unstable islands for increasing
steepness. A nonlinear stability analysis provides further insight
into the stability of the system. Most of the neutral curves show
a perfect agreement with the nonlinear stability analysis. However,
we find that the formation of disjoint unstable islands cannot be
reproduced by the nonlinear simulations and hence must be attrib-
uted to the linearization.

A study on the inverse Bond number reveals that surface ten-
sion has a significant impact on the stability of the film. While
for higher surface tensions both regimes, a stabilization and a
destabilization depending on the power-law index are possible,
the effect changes qualitatively for smaller surface tension
coefficients. For smaller inverse Bond numbers the undulated
topography always leads to a stabilization, independent of the
power-law index. The destabilization of thin film flows at high
inverse Bond numbers has not been reported experimentally yet.
Appendix A. Derivation of the system (42)

To begin with, we eliminate f̂ from Eq. (41) to obtain a single
fourth order equation for q̂ only. We then obtain

dRe 2K1ix
dq̂
dx

f 2
S � K1

d2q̂

dx2 fS þ q̂f 3
S x2 � 2K1q̂ixfS � 3K1

dq̂
dx

� �
dfS

dx

 !

þ 3K2d cota
d2q̂

dx2 f 4
S � 3dBo�1 d4q̂

dx4 f 4
S

� 1
f 2n�2
S

K2 6n
dq̂
dx
� 3inq̂fSxþ 3

dq̂
dx

� �
¼ 0: ð45Þ

Rewriting Eq. (45) into a system with de/dx = C(x)e(x) and the vector

ðe1; e2; e3; e4Þ ¼ ðq̂; dq̂
dx ;

d2 q̂
dx2 ;

d3 q̂
dx3Þ yields the coefficient matrix

CðxÞ ¼

0 1 0 0
0 0 1 0
0 0 0 1

C41 C42 C43 0

0
BBB@

1
CCCA; ð46Þ

where we introduced the matrix entries

C41 ¼
1

3dBo�1f 4
S

dRe f 3
S x2 � 2K1ixfS

dfS

dx

� �
þ 3

nK2

f 2n�2
S

ixfS

� 	
;

C42 ¼
1

3dBo�1f 4
S

dRe 2K1ixf 2
S þ 3K1

dfS

dx

� �
� ð6nþ 3ÞK2

f 2n�2
S

� 	
; ð47Þ

C43 ¼
1

3dBo�1f 4
S

½�dReK1fS þ 3K2d cot af 4
S �;
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